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Final Technical Report
AFOSR 86-0182 (Adaptive Networks)
Dr William O Berry, Program Manager

Biological Investigations of Adaptive Networks:
Neuronal Control of Conditioned Responses

Dr John W Moore (331-30-9491), Principal Investigator
Unversity of Massachusetts, Amherst 01003

I. Summary

Investigations of adaptive neural networks were conducted using the classically conditoned nic-
titating membrane reponse (NMR) of rabbit, a widely uscd model system for studies of learning.
Our work involved both neurobiclogical and theoretical approaches based on mathematical models
and computer simulation. The primary experimental approach involved recording from single brain
stem neurons in awake, behaving animals for the purpose of determining the loci and activity re-
lated to CRs. We developed computational tools for applying systems analysis to neurophysiological
data obtained from single-unit recordings from awake behaving animals. With the acquisition of
an expanded computer network, we became able to routinely characterize the relationship between
single neurons’ dynamic behavior and the CR in terms of differential equations and sophisticated
correlational analyses based on Fourier and Laplace transform methods. A second experimental
approach used WGA-HRP for anatomical studies of involved brain stem/cerebellar circuits. This
work significantly adds to our understanding of neural circuits underlying NMR conditioning.

Theoretical studies resolved around two mathematical models of learning. One is the Sutton-
Barto-Desmond (SBD) model which represents an implementation of the more general Sutton-Barto
model. The SBD model was designed to describe real-time features of the NM CR. A cerebellar
network implementation of this model was constructed by combining parametric constraints of
the model dictated by behavioral data with constraints based on anatomy and physiology of the
cerebellum. The second major theoretical development was the construction of a two-element
neural-network architecture that elegantly describes adaptive timing as manifested in the fine-grain
temporal characteristics of CRs. This model, designated VET in some of our papers, overcomes
certain limitations of the SBD model. A proposed cerebellar implementation of this model is
described in an appended report and in forthcoming published articles.

II. Research objectives

The general objectives for the reporting period were the same as those stated in previous reports
going back to those submitted in connection with AFOSR Grant 83-0215. These goals and our
approches to them remain unchanged, so no purpose would be served by restating them here. The
status of work in the field and the contributions of our laboratory are summarized in technical
reports listed in Section IV. I should mention that the experimental research outlined below was
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partially supported by NSF. This grant provided some of the funds needed for equipment used
in conjunction with single-unit recording and anatomical studies. Both AFOSR and NSF are
acknowledged in our reports because funds from both agencies have been used to purchace general
purpose equipment. There has been no duplication of effort in connection with these two sources
of support.

II1. Status of research

The main research efforts over the past three years are summarized in an appended manuscript
by the Principal Investigator entitled “Implementing connectionist algorithms for classical condi-
tioning in the brain”. This article provides an overview of our experimental and theoretical efforts
within the context of related work in other laboratories. It is not a complete description of all of our
work, however; detailed summaries have been provided in prior semi-annual reports and published
materials (Section IV).

Also appended is a paper entitled “Single-unit activity in the rabbit red nucleus during the
classically conditioned nictitating membrane response: A preliminary report”. This paper was
included in this technical report because, unlike other single-unit recording studies performed in
this laboratory during the past three years, it was not described in the proposal submitted last
year which led to our current grant, AFOSR 89-0391.

Finally, this report lists computer softwareB created by members of our group over the past
three years (Section VIIA).

IV. Technical reports

Included are published citations of work published and ”in press” from 1986 to the present.

Referencess from 1987 were initiated under AFOSR Grant 86-0182 and partially supported by NSF
as explained in Section II.

1. Moore, J.W., Desmond, J.E., Berthier, N.E., Blazis, D.E.J., Sutton, R.S., Barto, A.G. Sim-
ulation of the classically conditioned nictitating membrane response by a neuron-like adap-

tive element: Response topography, neuronal firing, and interstimulus intervals. Behavioural
Brain Research, 1986, 21: 143-154.

2. Blazis, D.E.J., Desmond, J.E., Moore, J.W., Berthier, N.E., Sutton, R.S, and Barto, A.G.
Simulation of the classically conditioned nictitating membrane response by a neuron-like
adaptive element: A real-time variant of the Sutton-Barto model. Proceedings of the Eighth
Annual Conference of The Cognilive Science Society. Hillsdale, N. J.: Lawrence Erlbaum
Associates, 1986, 176-186.

3. Schmajuk, N.A. and Moore, J.W. A real-time attentional-associative network for classical
conditioning of the rabbit’s NMR. Proceedings of the Eighth Annual Conference of The Cog-
nitive Science Society. Hillsdale, N. J.: Lawrence Erlbaum Associates, 1986, 794-807.
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11.

12.

13.

14.

15.

Desmond, J.E., Blazis, D.E.J., and Moore, J.W. Computer simulations of a classically con-
ditioned response using neuron-like adaptive elements: Response topography. Society for
Neuroscience Abstracts, 1986, 12: 516.

. Rosenfield, M.E. and Moore, J.W. HRP-WGA studies of premotor cerebellar-brain stem path-

ways for the classically conditioned nictitating membrane response. Society for Neuroscience
Abstracts, 1986, 12: 752.

. Berthier, N.E. and Moore, J.W. Cerebellar Purkinje cell activity related to the classically

conditioned nictitating membrane response. Society for Neuroscience Abstracts, 1986, 12:
1418.

. Berthier, N.E. and Moore, J.W. Cerebellar Purkinje cell activity related to the classically

conditioned nictitating membrane response. Ezperimental Brain Research, 1986, 63: 341-
350.

. Desmond, J. E. and Moore, J. W. Dorsolateral pontine tegmentum and the classically con-

ditioned nictitating membrane response: Analysis of CR-related single-unit sctivity. Ezperi-
mental Brain Research, 1986, 65: 59-74.

. Berthier, N.E., Desmond, J.E., and Moore, J.W. Brain stem control of the nictitating mem-

brane response. In Gormezano, 1., Prokasy, W.F., and Thompson, R.F. (Eds.), Classical
Conditioning, 3rd Edition. Hillsdale, NJ: Lawrence Erlbaum Associates, 1987, 275-286.

Schmajuk, N.A. and Moore, J.W. Two Attentional Models of Classical Conditioning: Varia-
tions in CS Effectiveness Revisited. University of Massachusetts at Amherst, Department of
Computer and Information Science, Technical Report 87-29, 1987, 33 pages.

Blazis, D.E.J. and Moore, J.W. Simulation of a Classically Conditioned Response: Com-
ponents of the Input Trace and a Cerebellar Implementation of the Sulton-Barto-Desmond
Model. University of Massachusetts at Amherst, Department of Computer and Information
Science, Technical Report 87-74, 1987, 61 pages.

Moore, J.W. and Berthier, N.E. Purkinje cell ac .vitv and the conditioned nictitating mem-
brane response. In Glickstein, M., Yeo C., and =+ ., J (Eds.), Cerebellum and Neuronal
Plasticity, New York: Plenum, 1987, 339-352.

Desmond, J.E. and Moore, J.W. Red nucleus single-unit activity during the classically con-

ditioned rabbit nictitating membrane response. Society for Neuroscience Abstracts, 1987, 13:
841.

Blazis, D.E.J. and Moore, J.W. A cerebellar cortical implementation of the Sutton-Barto-
Desiaond model of the classically conditioned rabbit nictitating membrane response. Society
for Neuroscience Abstracts, 1987, 13: 842.

Desmond, J.E. and Moore, J.W. Adaptive timing in neural netwurks: The conditioned re-
sponse. Biological Cybernetics, 1988, 58: 405-415.
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19.

20.

21.

22.

23.

24,

25.

26.

27.

Desmond, J.E. Temporally adaptive conditioned responses: Representation of the stimulus
trace in neural-network models. University of Massachusetts at Amherst, Department of
Computer and Information Science, Technical Report 88-80, 1988, 52 pages.

Schmajuk, N.A. and Moore, J.W. The hippocampus and the classically conditioned nictitating
membrane response: A real-time attentional-associative model. Psychobiology, 1988, 16: 20-
35.

Berthier, N.E., Barto, A.G., and Moore, J.W. Linear systems analysis of cerebellar deep
nuclei cells during performance of classically conditioned eyeblink. Society for Neuroscience
Abstracts, 1988, 14: 1239.

Rosenfield, M.E. and Moore, J.W. Is there a reciprocal connection between red nucleus and
interposed cerebellar nuclei in rabbit? Society for Neuroscience Absracts, 1988, 14: 493.

Moore, J.W. and Blazis, D.E.J. Cerebellar Implementation of a Computational Model of
Classical Conditioning. In Strata, P. (Ed.), The olivocerebellar system in motor control.
Berlin: Springer- Verlag, 1989, 387-399.

Moore, J.W. and Blazis, D.E.J. Simulation of a classically conditioned response: a cerebellar
neural network implementation of the Sutton-Barto-Desmond model. In Byrne, J. H. and
Berry, W. O. (Eds.), Neural models of plasticity. Experimental and theoretical approaches.
New York: Acadenic Press, 1989, 187-207.

Moore, J.W. and Blazis, D.E.J. Conditioning and the cerebellum. In Arbib, M.A. and Amari,
§. Dynamic interactions tn neural networks: Models and networks. Berlin: Springer-Verlag,
1989, 261-277.

Schmajuk, N.A. and Moore, J.W. Effects of hippocampal manipulations on the classically
conditioned ni~titating membrane response: simulations by an attentional-associative model.
Behavioural Brain Research, 1989, 32: 173-189.

Moore, J.W. Cerebro-cerebellar learning loops and language. Peer commentary, Behavioral
and Brain Sciences, 1989, 12: 156.

Moore, J.W. and Desmond, J.E. A cerebellar neural network implementation of a temporally
adaptive conditioned response. In Gormezano, 1. (Ed.), Learning and memory: The biological
substrates. Hillsdale, NJ: Lawrence Erlbaum Associates. In press.

Coulter, D.A., Lo Turco, J.J., Kubota, M., Disterhoft, J.F., Moore, J.W., and Alkon, D.L.
Classical conditioning reduces the amplitude and duration of the calcium-dependent afterhy-
perpolarization in rabbit pyramidal cells. Journal of Neurophysiology, 1989, 61: 971-981.

Moore, J.W., Desmond, J.E. and Berthier, N.E. Adaptively timed conditioned responses and
the cerebellum: A neural network approach. Biological Cybernetics. In press.




28. Moore, J.W. Implementing connectionist algorithms for classical conditioning in the brain.
In Commons, M., Grossberg, S., and Staddon, J.E.R. (Eds.), Neural network models of con-
ditioning and action. Hillsdale, N.J.: Lawrence Erlbaum Associates. In press.

29. Moore, J.W., Berthier, N.E., and Blazis, D.E.J. Classical eye blink conditioning: Brain sys-
tems and implementation of a computational model. In Gabriel, M and Moore, J.W. (Eds.),
Learning and computational neuroscience. Cambridge, MA: MIT Press. In press.

V. Professional personnel

1. John W Moore, Ph D, Psychology (Experimental/Learning), Indiana University, 1962. Pro-
fessor of Psychology (Biopsychology); Core Faculty, Neurosciece and Behavior (NSB) Program ;
Associated Professor of Computer and Information Science.

2. Neil E Berthier, Ph D, Psychology (Neuroscience and Behavior), University of Massachusetts,
1981. Senior Research Associate. Dr Berthier serves as a resource person and colleague. His salary
has been provided by NSF Grant BNS 85-06787, on which he is co-PI.

3. John E Desmond, Ph D, Psychology (Neuroscience and Behavior), University of Mas-
sachusetts, 1985. Research Associate.

4. William G Richards, Ph D, Pychology (Neuroscience), Princeton University, 1985. Research
Associate.

5. Marcy E Rosenfield, B S (Zoology), University of Massachusetts, 1982. Rosenfield’s formal
title is Departmental Assistant. She is a certified AALAS animal care technician.

V1. Interactions

Unless otherwise specified, the professional interactions listed in this section refer to the PI.
The material is broken down by year. The listings from Years One and Two are taken verbatim
from previous annual technical reports.

Year One:

1. Slide session chairperson and member of the program committee, Eighth Annual Conference
of the Cognitive Science Society, University of Massachusetts - Amherst, August, 1986.

2. Poster presentations, etc., Society for Neuroscience meetings, Washington, D C, November,
1986.

3. Participant in plenary session on Cerebellum and Learning (with R F Thompson, W Welker,
and § G Lisberger), Winter Conference on Neurobiology of Learning and Memory, Park City, Utah,
January 1987.

4. Speaker at Conference on Neural Models of Plasticity, Woods Holes MA, April-May, 1987.




5. Speaker and Participant at U S - Japan Seminar on Competition and Cooperation in Neural
Nets 2, University of Southern California, May, 1987.

Other principal interactions involve ongoing interactions (e g, classes and seminars) and collab-
orative relationships with colleagues: A G Barto, R S Sutton, M Jordan, A H Klopf, E J Kehoe,
N A Schmajuk, J Ayres, and others.

Because it involved grant supported travel, I should specifically note that J E Desmond, D
E J Blazis (graduate student), and I visited A H Klopf at Wright Aeronautical Laboratories for
two days in June, 1986 to conduct simulation studies of Klopf’s drive-reinforcement model and R
S Sutton and A G Barto’s time-difference model (formerly known as the adaptic heuristic critic
element).

Year Two:

1. Principal Participant: Satellite Symposium of the 2nd IBRO World Congress of Neuroscience,
The Olivocerebellar System and Motor Control, Turin, Italy, August, 1987,

2. Invited colloquia and seminars during 1987-88 academic year: Wesleyan University, Univer-
sity of Texas, University of Illinois.

3. Presentations at meetings: AFOSR Life Science Program Review, Brooks AFB, Texas,
December, 1987; Annual Winter Conference on Neurobiology of Learning and Memory, Park City,
Utah, January, 1988; Invited lecture, Midwestern Psychological Association meetings in Chicago,
April, 1988.

4. Grant Panels Activity: NIH Biopsychology Panel (ad hoc), October, 1987. This included site
visits to UCIrvine and UCLA during September, 1987; NIMH Behavioral Neurobiology Subcom-
mitee (ad hoc), October, 1987; NSF panel on Research Experiences for Undergraduates (Psychobi-
ology sub panel), February, 1988; ONR program review in Cognitive and Neural Science (Board of
Visitors), February, 1988.

5. Reviewing and Related Activity: Consulting editor for Psychobiology and reviewed manuscripts
for Journal of Experimental Psychology: Animal Behavior Processes, Psychological Bulletin, Behav-
toral Brain Research, MIT Press. Member of Advisory Board for a new monograph series, Research
Notes in Neural Computing, to be published by Springer-Verlag.

6. I was honored in being asked to nominate possible recipients of this year's Kyoto Prize (a
Nobel class monetary award given by Japan's Inamori Foundation) for work in Cognitive Science.
The prize was ultimately awarded to Noam Chomsky.

7. Continuing strong interactive relationships with A G Barto and other colleagues working
in Adaptive Networks: A H Klopf's group at Wright-Patterson, R S Sutton at GTE Labs, N A
Schmajuk presently at Northwestern University and others.




8. Our relationship with Barto’s group continues to strengthen our relationship with the uni-
versity’s Department of Computer and Information Sciences where I am Associated Professor.

9. Drs Berthier and Desmond became Associated Faculty of the university’s NSB Program.
They have also been asked to review grant proposals and submitted manuscripts.

Year Three:

1. Perhaps the most significant interactions occurred as part of team-taught graduate level
seminar offered by my colleague in computer science and myself (COINS 891A, fall, 1989, 3 credits).
The genernal topic was behavioral, biological, and computational approaches to learning.

2. The fall of 1988 also provided opportunities for substantial interaction with Dr James Houk,
a cerebellar and motor system physiologist who is chair of the physiology department at Northwest-
ern University Medical School. Dr Houk spent part of his sabbatical semester here, and interactions
with him were mutually rewarding in two main areas: (a) quantitative treatment of neural neural

data related to movement—especially systems analysis; (b) cerebellar implementation of computa-
tional models.

3. I gave a major invited presentation at a satellite symposium organized by D. Alkon and C.
Woody held in connection with the 1988 meetings of the Society for Neuroscience in Toronto.

4. I gave an invited talk at the annual Winter Conference on the Neurobiology of Learning and
Memory convened at Park City, Utah, January, 1989.

5. I gave an invited talk to the neuroscience group at Oxford University in March, 1989.

6. I gave an invited lecture at the Twelfth Symposium on Models of Behavioral convened at
Harvard University, June, 1989.

7. Neil Berthier gave an invited talk in the department of neurobiology at SUNY Stony Brook,
February, 1989.

8. John Desmond gave an invited talk to the psychology department of Brown University in
March, 1989.

9. Diana Blazis (graduate student now working on her dissertation) gave an invited talk to the
psychobiology group of Yale University, May, 1989.

VII. New discoveries

Discoveries that might be designated as new were those stemming from experimental research,
e.g., the anatomical work discussed above in published and forthcoming technical reports.




VIIA. Software developed

Most of the software developed over the past three years was designed to run on our local
network of Sun workstations (SUN LAN), which includes a DEC LN03-plus laser printer, dumb
terminals, and interfaces for Apple Ile and other small systems. Summaries of software written by
Neil Berthier, Diana Blazis, and Bill Richards appear below.

Additional software has been written by John Desmond. Because of its length, Desmond’s
summary appears as a separate appendix to this report.

Software by Neil Berthier:

Dr Berthier has done most of the system programming. and he has created several programs
for performing sophisticated analyses of neural and behavioral data.

¢ Upgrade SunOS software as it became available, applied patches as necessary.

e Install X window system, with Purdue patches. Install and debug contributed software in-
cluding: x-graph-11, texx2.9, xlock, xviewsun, xgdb, twm, xdbx, xfig.

e Install and debug text formating and printing software based on TeX, LaTeX, BibTex, SliTex,
dvi2ln03, In03dvi, dvitool. Write LaTeX macros.

o Install Gnu software, gnu-gcc, gnu-gdb, gnu-emacs. Write macros for gnu-emacs.
e Write a graphics driver for DEC In03-plus.

o Write a system of programs to do basic analysis of spike data.

periresponse.c — compute periresponse histograms.

— mannwhiv.c - test null hypothesie about firing patterns using a Mann-Whitney test.
kolsmir.c ~ test null hypothesis about firing patterns using a Kolmogorov-Smirnow test.
binom.c - test null hypothesis about firing patterns using a Binomial test.

prelim.c - compute basic parameters of cell firing and test null hypothesis about firing
patterns using a poisson test.

{

{

{

— gamm.c - test null hypothesis about firing patterns using a gamma distribution hypoth-
esis.

¢ A system of programs to compute digital filter coefficients, and to digitally filter data.

— kaiser.c - compute kaiser filter coefficients.

— marr.c ~ compute Marr-Hildreath filte coefficients.
- filter.c - filter spike data with digital filter.

— filterdis.c - display filtered data using SunView.

— perifil.c — display periresponse filtered data.




e A system of programs to do fast ourier transforms (FFTs).

[

fft.c — do foward FFT.

ifft.c - do inverse FFT.

fdat.c — do FFT of data.

fitdis.c — display FFT of data.
fcoef.c — do FFT of filter coefficients.

o A system of programs to do linear systems analyses of data.

recur.c — a program that computes time series analysis coefficients by inverting matrices.
convolv.c — use periodic convolution to get predicted output of the linear system.
mserr.c — compute multiple R.

correlation.c - use FFT and iFFT to do cross-correlational analysis.

disp-correlation.c - display results of cross-correlation with SunView.

transf.c - compute transfer function for a set of coefficients.

transdislog.c — display and fit transfer functions using SunView.

» A system of programs to compute time series coefficients using QR. decomposition.

recur_main.c — main program to compute coefficients.

QRdecomp.c - programs based on LINPACK to do QR decomposition using Householder
transformations.

— float_signal.c ~ catches floating point errors.

e Many Unix scripts to resolve systems problerrs.

Software by Diana Blazis:

¢ General Simulator. Computes inputs, outputs and update rules for models of adaptive
behavior. The program can be run interactively or automatically (“batch” processing). In
interactive mode the program provides popup menu. which allow the user to change learning
algorithms, model parameters, and learning procedures at will. The program displays the
appearance of the paradigm, computes the experiment, and plots model output in several
forms. In batch mode, the program reads prepared command files and automatically gen-
erates hardcopy graphics output on request. Presently, the simulator runs several learning
algorithms for many different stimuli. The modular form of the simulation program allows
for future incorporation of other learning rules. Graphics output, which includes response
waveforms for acquisition and terminal trials, learning curves, and spike histograms, can be
enabled or disabled at operator request.




e nmrtool. Interactive program for analysis of data obtained during classical conditioning
trials. Data collected using our Apple First system are written to disk and then uploaded
to the SUN LAN. nmrtool displays responses for all trials. Several response measures are
computed, including peak and onset latencies, CR amplitudes, and CR areas. Learning curves
are plotted. Hardcopy of nmrtool results is available at user request. nmrtool generates
summary files that used for automated statistical analysis of the data. Future plans for
nmrtool include a user interface to program analysis of data obtained during any classical
conditioning procedure.

¢ Related projects. (a) Basic nmrtool: used prior to the implementation of nmrtool for
the SUN LAN. Data from behavioral experiments were analyzed on our Apple Ile's using
a modifified version of an analysis program prepared by John Desmond and Bill Richards.
(b) File conversion routines: data obtained frem the FIRST system that controls behavioral
experiments via Apple Iles and collects data must be converted for transfer to the SUN
LAN. File conversion is coded in Basic and executed on the Apple Ile. (c) Applications
programming and maintenance for our FIRST system, e.g. programming stimulus control for
new experiments. (d) Assorted small programs for statistical manipulation of output files of
nmrtool.

Software by Bill Richards:

Dr Richards wrote software that enables a Commodore C-64 computer to control physiological
recording experiments. This software is readily transferable to other computers using the 6502-
series 8-bit processor.

e Acq/ctrl. This program is a BASIC/assembly language hybrid that controls CS and US
presentations for differential conditioning, detects CRs, counts neural spikes in two separate

channels, and provides on-line cumulative histograms of spike activity compiled separately
for CS+ and CS- trials and for CR and non-CR trials.

o EVENT. Assembly language program for off-line trial-by-trial analysis of event timing.
Events on eight channels are timed with 0.1 msec resolution. The program also controls
A/D sampling of voltage trace from NMR transducer and disk files for NMR, neural spikes,
and synchronization.

e HSAD. Basic/assembly language program which controls high-speed digitization of a single
channel of neural spike activity for (a) confirmation of window discrimination (reads and edits
corresponding disk files generated by EVENT) or (b) graphic plotting.

¢ FORMAT Converts EVENT files downloaded from C-64 to format which ANALYZE (by
John Desmond) can read.

o FIG.HIRES Reads C-64 HSAD files and EVENT NMR files and generates oscilloscope-like
figures showing neural activity and NMR for single trial on laser printer (LN03). An example

10




is shown in Figure 1. Previously, such illustrations required costly and time consuming
photograpt . processing.

Figure 1. Illustration of FIG.HIRES output. Top trace is single-unit neural activity on a
single NMR conditioning trial. The second trace is the corresponding NMR. The left-hand
dashed vertical line represents CS onset. The right-hand vertical line represents US onset.
The interval between the two lines is 350 milliseconds.

11




John E. Desmond — software development

C/Unix software for the Sun

iball is a mouse-driven SunView program that allows user to examine individual trials
from a recording session. The CR, spikes, cumulative sum of spikes, and the cu-
mulative sum adjusted for baseline firing is displayed. By using the mouse, the CR
onset, CR duration, CR velocity, burst onset, burst duration, burst velocity, and
burst depth of modulation is computed and displayed. In addition, CR area and
maximum CR amplitude are automatically computed. The data can be stored for
further analyses and subsequently reloaded for modifications. The user also has op-
tion of displaying the following averaged plots: (a) CS+ or CS- trials (b) CR trials
(c) NO CR trials, (d) CR trials adjusted for CR onset. Sample output is depicted in
Figures 1, 2, and 3.

binom performs binomial statistical test on CR and NO CR trials. Tests the null hy-
pothesis that firing rate is identical for the two trial types within a specified time
interval, as described by Dorrscheidt (1981).

plot_isi outputs interspike interval histograms of cell baseline firing. The output is stored
in a file in a way that can be easily searched with standard Unix search functions.

cusums generates the following graphical display (SunView) for 5 cells at a time: (a)
averaged P3TH for CR trials, (b) averaged PSTH for NO CR trials, and (c) averaged
PETH for CR trials. The number of trials for each graph is also displayed. The user
has the option to include or remove time calibration grid. The program can also be
set up in an autoprint mode for batch printouts of all cells.

ave_changepoint (in collaboration with Neil Berthier) displays averaged filtered neuronal
activity for CR and Non-CR trials. Filtered waveforms are displayed in a peristimulus
plot (synced to the CS onset) and in a perievent plot (synced to the CR onset). Nine
cells ¢, ..isplayed per screen, and screens can be printed out as batch job in autoprint

mou-  'ne purpose of the software is to find the time(s) at which neuronal firing
rate chares, These times can be measured from the zero-crossing points of the
wavef):.. -

simdata simulates CRs and spikes. The program is designed to simulate neuronal ac-
tivity that is stimulus-dependent, movement-dependent, or both. Activity that is
movement-dependent can respond to the position, velocity, or acceleration of the
movement, and can either lead or lag the simulated CR. Stimulus-dependent activity




occurs at a fixed latency relative tc the onset of the CS. The purpose of this program
is to generate data with known input-output properties for comparison with genuine
data.

classify allows user to place cell numbers into different category files. The program is
basically designed for data organization.

plot _cells is a mouse-driven CGI program for digitizing recording site locations. An
anatomical atlas is drawn on the screen. The user then marks the recording location
by pressing a mouse button, and the coordinates of the recording site are stored.

display _cells displays specified recording sites on screen atlas, usiug the coordinates gen-
erated in the “plot_cells” program. Sample output is depicted in Figure 4.

bib is a reference collection and formatting program. The program extracts references
from a document and then generates a bibliography in the journal’s preferred format.

findref is a database search program. The user enters key words and the program returns
references that contain those keys.

raz is a SunView program for manipulating raster files on a simulated sheet of 8.5 X 11.0
inch paper. The user can adjust the position of multiple raster images and create
a composite picture. The simulated sheet of paper can be rotated, and the images
can be magnified or reduced. When the desired composite picture is achieved, a
“snapshot” of the picture can be taken and printed on a LNO3 laser printer. Sample
output is depicted in Figure 5.

mmolar is a neural network model of classically conditioned responses. The program
zenerates graphical (CGI) display of CR topography and synaptic weights. (See
Desmond, 1988; Desmond, in press; Desmond and Moore, 1988; Moore, Desmond,
and Berthier, in press).

fanout simulates spreading activation in a planar array of neuron-like elements. See pp.
33-43 in Desmond (1988).

nmr (in collaboration with Diana Blazis) is a SunView application for displaying and
analyzing nictitating membrane response behavioral data collected on the APPLE
FIRST system.




BASIC/Assemnbly Language software for Apple 1le

makefiles converts FIRST-formatted data into binary files that are suitaple for uploading
to the Sun.

spktime is an interrupt-driven assembly-language program that reads information from
3 tracks of a magnetic (VCR) tape. The first track contains analog (behavioral)
information. The program digitizes this information at 5 ms intervals. The second
track consists of neuronal events (action potentials). The program records the times
at which the action potentials occur to 250 microsec accuracy. The program decodes
trial type information and synchronous pulses from a third track. Data are stored
on floppy disks and uploaded to a Sun workstation for subsequent analyses. The
program queries the user for the starting and ending values of the tape counter for
each cell, and stores this information in a file; thus, the experimenter obtains a
comprehensive record of taped data that facilitates later retrieval.

Pavlov is a BASIC/assembly language program for running classical conditioning experi-
ments on the Apple lle while performing neurophysiological recordings. The program
presents various conditioned and unconditioned stimuli to the subject, and codes each
trial type presented on one track of a VCR magnetic tape. The trial types that are
presented to the subject can be changed during the session with the press of a key.
The number and types of trials presented are displayed on the monitor. Subject
numbers and training protocols are stored to minimize errors in training. The pro-
gram has a “collision mode” for perfoming neurophysiological collision experiments.
In this mode, the computer is interfaced with a window discriminator. TTL out-
put from thc discriminator (caused by a spontaneously occurring action potential)
is detected and this output triggers an oscilloscope sweep and initiates a precisely
timed delay-interval (delay controlled by the experimenter). At the end of the de-
lay, the cowmputer triggers 2 stimulation pulses. If only the second of these pulses
evokes an antidromic response, then the first stimulation pulse has collided with the
spontaneously occurring spike.

I modified the Apple version of the public domain software “kermit” so that an entire
disk’s data can be uploaded, rather than one file at a time. This significantly reduces the
amount of time that the user must devote to uploading.
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Figure 1: A single trial displayed in the iball software. The traces dsiplayed are, from top to
bottom, digitized behavioral response, spike train, cusum, and cumulative spike counts. The two
vertical lines represent, from left to right, CS onset and US onset. The straight iine fitted on the
cusum graph was drawn by the user. From the slope of this line, the software computes the depth
of modulation of the neuronal burst. On this trial, the neuronal burst is firing at 113.8 spikes/sec
above the baseline firing rate.
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Figure 2: Output from the iball software. Depicted is behavior, cusum, and cumulative spikes
averaged over all CR trials. Traces are synchronized to the CR onset (vertical line). From this
plot, the user can estimate temporal relationship between neuronal activity and the behavior. In
this example, neuronal firing precedes the behavior by 60 ms.
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Figure 3: The raster mode of the iball software allows user to take advantage of iball’s time
measurement functions on graphs generated from other programs. In this example, the user has
measured a CS-evoked burst of activity beginning at 392 ms and lasting for 74 ms.




Figure 4: Output from the display._cells software. Coordinates of all cells, which have been
obtained with the plot_cells software, are retrieved and cell positions are designated by asterisks.
The user can display any subset of the cell population by entering those cell numbers. The program
also has an extraction function. With this function the user specifies a region on the screen and
the numbers of all cells that are located within the region are printed out.
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Figure 5: An example of the raz software. This figure illustrates 5 raster images on the screen.
- The screen can be scrolled up/down and right/left using the scrollbars. In the center of the display
is a miniature view of the positions of the raster images as they would appear on an 8.5 in. by 11.0
in. sheet of paper. (This miniature view can be moved or hidden by the user). The images can
be enlarged or reduced, and the page can be rotated. The user can select an image and change its
position by moving the mouse cursor and pressing a button. When the user is satisfied with the
positions of the images, a “snapshot” of the composite picture can be made and sent to the printer.
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Implementing Connectionist Algorithms for Classical Conditioning in the Brain

Abstract Simple connectionist models of learning that conform to the Widrow-Hoff rule can
be parameterized and extended to describe real-time features of classical conditioning. These
features include the dependence of learning on the moment-to-moment status of input to the
computational system and on the desired topography of its output. Using the classically
conditioned nictitating response (NMR) of the rabbit as a prototypal system, my coworkers
and I have devised models which successfully meet these real-time criteria. Two models and
neural network architectures are described. The first consists of a single neuron-like processor
with learning rules based on the Sutton-Barto model. The second consists of two neuron-like
units with input based on a tapped-delay line representation of stimuli. Using anatomical
and physiological data, both network models can be aligned with brain stem and cerebellar
circuits involved in classical NMR conditioning. These models and their implementation in
the brain have testable empirical consequences.




1. Introduction

This chapter illustrates how computational models based on abstract neural networks can
provide insights into questions such as where in the brain learning occurs and the mechanisms
that bring it about. It serves as a tutorial on aligning quantitative learning theory with
physiology, thereby establishing a potential conduit for communication between molar and
molecular levels of analyses. One might say that such efforts are about bringing abstract
models to life in real nervous systems. Specifically, it brings together two lines of research:
(a) studies of brain circuits underlying classical conditioning of a simple skeletal response,
the rabbit nictitating membrane response (NMR) and (b) developing computational models
applicable to real-time conditioning phenomena such as response topography and CS-US
interval effects. Our work stands on a foundation provided by the “extended laboratory”
(Gabriel, 1988) of those who investigate classical eye blink/NMR conditioning (Gormezano,
Prokasy, and Thompson, 1987).

This chapter also illustrates Churchland’s (1986) point that a theoretical dimension can
be added to the neurosciences through a process of coevolution. Theories, expressed as com-
putational algorithms, can guide decisions about where best to invest experimental resources.
Behavioral neuroscientists regard the preparations they investigate as model systems, and
therefore they are not indifferent to the broader implications of their work. However, they
believe that exploiting these implications requires understanding the model system at multi-
ple levels. At the computational level, this understanding is expressed in terms of algorithms
capable of simulating how the system behaves under a range of environmental challenges.
Production systems have this capability. More interesting and useful in the long run are
algorthims that emulate what actually occurs in the brain to cause the system behave as it
does. :

I shall recount some of the steps my colleagues and I have taken in evaluating models of
classical conditioning and casting them in terms of neural networks that might convincingly
be implemented in real brains. By this I refer to discovering alignments between models and
what is known of the anatomy and physiology underlying a given CR. I say “a given CR”
because we are concerned primarily with developing theoretical frameworks useful to neuro-
scientist. As neuroscientists, our interest in theory cannot stray very far from the nuts and
bolts of our experimental work. As neuroscientists, workers in the extended NMR condition-
ing laboratory seek a deep understanding of classical conditioning. Such an understanding
demands rigorous theoretical expression, and thus NMR conditioning has been approached
from three directions—behavior, biology, and computation. The overriding objective is to
integrate these approaches in much the same way that oculomotor physiologists have done
with saccadic eye movement and vestibular oculomotor reflexes (Robinson, 1981; 1989). The
oculomotor example is apt because of shared anatomical systems.




Before proceeding, some comment about the title is in order. The title speaks of imple-
menting connectionist algorithms? in the brain. Others have applied the term instantiation
to this process. When considering the dictionary definitions of these two terms, I find im-
plementation more apt. According to Webster’s New Collegiate Dictionary, the infinitive
“to instantiate” means “to represent an abstraction by a concrete example” whereas “to
implement” means “to provide instruments or means of expression”.

I would argue that instantiation is a prerequisite to implementation. To illustrate, my
colleagues and I began by selecting one abstract computational theory, the Sutton-Barto
(SB) model, which showed promise in describing many of the basic phenomena of classical
conditioning, particularly the molar features of classical conditioning of the eye blink/NMR
(Barto and Sutton, 1982; Sutton and Barto, 1981). We then sought a spccific instance of the
SB model which could describe in detail real-time features of the conditioned NMR, including
response topography. We have referred to the resulting constrained and parameterized ver-
sion of the model as the Sutton-Barto-Desmond (SBD) model (Moore, Desmond, Berthier,
Blazis, Sutton, and Barto, 1986). By common usage, the SBD model is an instantiation—a
concrete representation—of the abstract SB model. When we speak of implementing this
model (Moore and Blazis, 1989), we mean finding brain processes and mechanisms (“instru-
ments” ) conceivably capable of generating and explaining the measurable consequences of
its parameterized and algorithmic (“instantiated”) form.

Animal learning theorists are accustomed to evaluating models solely by behavioral crite-
ria. They also prefer models that are parsimonious and elegant. Difficulties arise when there
are many serviceable models to account for phenomena at the level of behavior. The instan-
tiation of models into algorithmic and parameterized form adds constraints to models that
are useful in their evaluation, but even at this level of exactness the choice of the more valid
model can be arbitrary. Animal learning theorists attempt to escape from this dilemma by
designing elaborate experiments that test highly refined behavioral predictions. While not
minimizing the importance of this strategy, I suggest that a brain implementation scheme
can imply independent experimental assessments of models using criteria at the level of neu-
robiology as an adjunct to behavioral criteria. It goes without saying that the success of this
approach depends on having accurate information about neural substrates of the behavior
being modeled. Implementations schemes should be physiologically compelling, not merely
plausible. Later on I will illustrate this point by showing how implementation schemes my
colleagues and I have devised for two models have testable hypotheses in the domain of neu-
rophysiology. The situation is somewhat comparable to neuroanatomists’ quest for Renhaw
cells, which was s‘imulated by physiologists’ claims that they must exist.

!Connectionist algorithms refer to any member of a class of models cast in terms of modifiable connection
weights among neuron-like processing elements. The term is not limited to the so called delta or LMS
learning rule or to learning through back-propagated error correction.




Devising good implementation schemes for instances of mammalian behavior such as
NMR conditioning is not easy. It is difficult because of the virtual impossibility of obtaining
direct and rigorous proof that mechanisms proposed to account for phenomenology actually
exist and function in ways consistent with the model. We must therefore approach the ques-
tion of mechanisms indirectly through experimental probes—testing behavioral predictions,
making lesions or pharmacologic interventions, and recording neural activity. It would be
comforting if agreed-upon facts were not open to differing interpretation, but this state of
affairs seldom exists. However, it is more important to identify agreed-upon experimental
evidence than to seek consensus on what the evidence means. What, then, of experimental
facts that are in dispute, and which disputes are most crucial to resolve? A good model and
implementation scheme should tell us.

2. Neurobiological Background

Much of the difficulty in addressing questions of loci and mechanisms of learning arises
from a reliance on lesion data and other indirect evidence. Although lesion data are vitally
important, they have left workers in this field with some puzzles that will not be easily
resolved. These unresolved issues are important for implementing neural network models of
NMR conditioning in the brain. Before considering them, let us review the facts which I
believe are not in dispute.

o Telencephalic brain regions and structures are not essential for acquisition, mainte-
nance, or performance of the CR. Telencephalic regions that have been the focus of
lesion studies include neocortex, hippocampal formation and other components of Pa-
pez circuit, basal ganglia, thalamus, and hypothalamus. At the midbrain level, lesion
studies have shown that tectum, tegmental reticular formation, substantia nigra, and
periacquiductal grey, to mention a few involved structures, are not essential for condi-
tioning. The only essential midbrain structure identified to date is red nucleus (RN).

¢ Metencephalic brain regions, the cerebellum and brain stem are essential for the acqui-
sition, maintenance, and performance of CRs. Within the metencephalon, researchers
agree that the following subset of structures are essential for expression of robust CRs
with normal topography: (a) Cerebellar cortex, specifically the region designated by
anatomists as hemispheral lobulus VI (HVI); (b) cerebellar nucleus interpositus, specif-
ically the anterior region (NIA); (c) magnocellular RN, spe-ifically the portion that
represents the facial region around the eye; (d) inferior olivary nucleus; specifically the
dorsal accessory olive (DAO) which represents the facial regions around the eye and
sends climbing fibers to HVI and NIA.




o Lesions that disrupt or eliminate CRs in one eye need not affect acquisition or perfor-
mance of CRs by the other eye. Nor do such lesions interfere with the normal savings
of trials to criterion when the US is no longer applied to the affected eye but is switched
to the other eye. Since savings can be demonstrated, it is clearly the case that les.ons
do not impair some general capacity to acquire and store information.

e To a surprizing degree, lesions that disrupt or eliminate CRs do not affect the UR,
although there may be small modulations of UR amplitude which are understandable
in light of known anatomy and physiology.

o The reflex pathways mediating the CR and UR involve motoneurons that innervate the
extraocular muscles, especially the retractor bulbi muscles. Most retractor bulbi mo-
toneurons lie in the accessory abducens nucleus (AAN) and are innervated by nearby
second-order sensory neurons of spinal trigeminal subnucleus pars oralis (SpoV). Al-
though the brain stem components of these circuits have been well characterized both
anatomically and physiologically, the nature and extent of the cerebellum’s contribu-
tion remains an active area of research. There is strong evidence, outlined below, that
the cerebellum makes a substantial causal contribution to the generation of CRs.

Workers in the extended laboratory of the conditioned NMR have proposed various test
to determine whether CR-disrupting lesions or pharmacologic interventions involving critical
metencephalic structures affect learning or performance. CR-disruption might be due to any
number of factors unrelated to learning—these might all be subsumed under the heading
“performance factors”: (a) motor deficit, (b) sensory deficit, - ruption of timing, (d)
attentional deficit. Motor deficits can be eliminated as a cause o1 CR disruption to the
extent that the UR remains unaffecied (over a range of US intensities). Sensory deficits can
be elimated to the extent that CRs are disrupted with different CS modalities. Attentional
deficits can be ruled out the extent that CRs occur in the contralateral eye. Disruptions of
timing can be assessed by varying the CS-US interval (Desmond and Moore, 1982).

Researchers do not agree on whether any of the above brain regions is involved in the
actual learning process or, indeed, whether learning also depends on the integrity of other
structures (Desmond and Moore, 1986). One possibility is that “learning the connection
between a CS and the US” occurs within Purkinje cells (PCs) of cerebellar cortex, specifically
at parallel fiber synapses. Contending views are that the critical connections are formed
within the deep cerebellar nuclei or brain stem. It is well to get these issues in front of us
before introducing implementation schemes. Thus armed, the reader can better judge their
strengths and weaknesses. Some unresolved issues regarding the lesion data are reviewed
here.




o Do the neural commands (motor programs) that result in a CR originate in the cerebel-
lum? That is, can it be said that the cerebellum is a proximal cause of CR topography?
We have recently peformed a linear systems analysis of the relationship between the
firing rate of single neurons in NIA and the position of the NM during conditioning
trials (Berthier, Barto, and Moore, 1988). Regarding a causative link, we find that in
some NIA cells the relationship rate of firing and position of the NM can be modeled by
a nonrecursive (causal) digital filter (Hamming, 1983). Using a related approach, we
estimate the transfer function between neural activity and NM position, and from this
it is possible to write a differential equation relating the two variables. Some NIA cells
with CR-predictive firing yield equations for second-order systems. These equations
relate a cell’s firing rate to the acceleration, position, and velocity of NM movement.
It is worth noting that NM movement is linearly related to eyeball retraction. In fact,
the sweep of the NM over the eye is caused by retraction of the globe. The mechanics
of eyeball retraction are those of a Voight element consisting of elastic and viscous
components, a classic textbook example of a second-order linear system. Hence, it
is perhaps not surprizing that equations relating the firing of some NIA cells to the
conditioned NMR are those of second-order linear systems.

® Do lesions of cerebellar cortex produce a complete and permanent loss of a previously
acquired CR? This question is important in itself, but especially so because of the well
known theories of Marr (1969) and Albus (1971), who independently suggested that
motor learning, including classical conditioning, involves cerebellar cortex in a funda-
mental way. Yeo and his colleagues were the first to show that HVI lesions disrupt
CRs, typically by either eliminating them altogether or greatly reducing their ampli-
tude (Yeo, Hardiman, and Glickstein, 1984). These studies have been extended to
show that lesions of HVI must be complete in order to eliminate small amplitude re-
sponses that would normally be counted as CRs and to prevent recovery after extended
post-operative training (Yeo and Hardiman, 1988). Lavond, Steinmetz, Yokaitis, and
Thompson (1987) report small amplitude CRs and recovery following extended training
in cases where HVI removal appears to have been complete, and so the issue remains
in question.

® Do lesions of the inferior olivary nuclei cause a progressive decline of the CR resembling
extinction as some investigators claim (McCormick, Steinmetz, and Thompson, 1985),
or is it the case that such lesions merely disrupt normal functioning cerebellar in this
way bring about an immediate detrimental effect on performance (Yeo, Hardiman, and
Glickstein, 1986)7 This issue is as yet unresolved because experiments have yielded
conflicting results. If lesions of the inferior olivary nuclei, particularly DAQ, do result
in experimental extinction, then this would support models built on the idea that
climbing fibers from DAO to cerebelluin carry the reinforcement signal from the US to
sites of learning.




¢ Does stimulation of the DAO provide a reinforcing signal for learning in cerbellar cortex
(Steinmetz, Lavond, and Thompson, 1989)? Or is any learning in the cerebellum
confined to NIA which receives climbing fiber collaterals from DAO? Related to this
question is the possibility that stimulation of DAO does not reinforce learning in the
cerebellum at all. It may merely stimulate brain stem elements of the reflex pathway
underlying the UR where learning might occur (Bloedel, 1987; Yeo, 1989).

There are other issues to be resolved among workers in the extended laboratory of the
conditioned NMR. I have mentioned only those that bear on evaluating the implementation
schemes suggested for each of the models outlined in subsequent sections. Each model has
its own implementation scheme. They both assume that learning occurs through Hebbian
mechanisms which involve synaptic modification through convergence of CS and US informa-
tion onto single neurons (Byrne, 1987). They both assume that these synaptic modifications
occur in cerebellar cortex (HVI) and that CRs are initiated by the action of PCs on NIA cells
to which they project. The implementation for the SBD model assumes that learning oc-
curs in cerebellar cortex, but one synapse before the PC or output stage (Moore and Blazis,
1989). The other model, designated VET, is more complex and assumes that learning occurs
within the brain stem as well as in cerebellar cortex. The cortical component assumes that
learning occurs through modification of parallel fiber/PC synapses. In addition, it assumes
that learning also occurs at the synapses of parallel fibers and Golgi cells (Moore, Desmond,
and Berthier, 1989).

3. The SBD Model

The SBD model has been described in detail elsewhere (Moore, Desmond, Berthier,
Blazis, Sutton, and Barto, 1986; Moore and Blazis, 1989) and so a brief summary will
suffice. The model is based on a single neuron-like processing unit which receives input from
many potential CSs and a US. The processing unit adjusts the weights (synaptic efficacies)
of the CS input so that future output of the unit matches its current output.

Equation 1 specifies that the output of this system, denoted s(t), equals the weighted
sum of its input from potential CSs and the US. The variable s(t) is a linear function of
its weighted input only within an allowed range imposed by the fact that the NM can only
move so far (about 10 millimeters) as the eyeball retracts. A CS’s contribution to the output
of the element is the product the current strength of its representation, denoted z(t) in the
model, and a corresponding “synaptic” weight denoted V(¢). Formally, the output of the
system at time ¢, denoted s(t), equals the weighted sum of input from all CSs, where z;(¢)
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refers to the magnitude of CS;, 7 = 1,...,n, at time ¢:

(t) = g"lv;(t)w.-m + N (). (1)

N(¢) is the US’s contribution to s(t).

In Equation 1, z;(t) represents the activation level of the :th member of a set of potential
CSs at discrete times ¢ after onset (¢ represents successive time steps of 10-milliseconds du-
ration). The following specifications for z; were dictated by two contraints: (a) generation of
realistic response topography for a forward-delay paradigm with a favorable CS-US interval,
and (b) generation of realistic interstimulus intervai (ISI) functions. The optimal CS-US
interval for NMR conditioning is generally taken to be 250 milliseconds (Gormezano, 1972).
When the CS; begins, z; = 0.0. Tt remains at 0.0 until ¢ = 7, i.e., 70 milliseconds after CS;
onset. At this point, z; begins to increase in an S-shaped fashion. It levels off to & maximum
value of 1.0 by ¢ = 30 (300 milliseconds after CS; onset) and remains at this value until CS;
offset, at which time z; begins to fali exponentially back to 0.0. Thus, according to Equation
1 the output of the model, s(t), to CS; conforms to the temporal map or template provided
by z;. As the number of training trials increases, the variable V,(t) increases, and the CR
becomes increasingly robust. This process is reversed over a series of extinction trials.

Learning in the SBD model follows a modified Hebbian rule which states that changes
of the synaptic weight of CS;, AV}, are proportional to the difference between the current
output, s(t), and the trace of preceding outputs, 3(t). At time ¢, AV; is computed as follows:

AV(t) = cls(t) - S(8)]3i), @)
where cis a lea.rniﬁé rate parameter, 0 < c < 1.

The factor Z;(t) in Equation 2 specifies the degree to which the “synaptic junction”
corresponding to CS; is eligible for modification (Sutton and Barto, 1981). Z; is driven by
the variable z(t);: After CS; onset, it increases with the z;, but with a lag of 30 milliseconds.
It remains at full strength as long as the CS; is on and begins to decay to a baseline value
of zero 30 milliseconds after CS; oftset. The rate of this decay is inversely related to CS;
duration whenever CS; exceeds 250 milliseconds.

Equation 2 does not contain an explicit term for the reinforcing action of the US. The
US is important only insofar as it affects the term s(t) — 5(t). The interaction the two time-
dependent variables associated with CS;, z;(t) and Z;, together with s(t) — 3(t), govern the
rate of learning and shape of ISI functions. Trial-wise learning curves reflect accummulated
net changes in V; occurring within each trial. Such changes occur before and after the
occurrence of the US. For example, given the 10-millisecond time step used in our simulations




(e.g., Moore et al, 1986), a trial with an ISI of 350 milliseconds might involve over 400
computations of AV,.

The term 3(t) in Equation 2 can be thought of as a short-term decaying trace of the
system’s output from previous time steps. Alternatively, it can be interpreted as a prediction
or expectation of output based on previous output. It is computed as follows:

3(t+1) = B3(t) + (1~ B)s(¢), (3)
where 0 < 8 < 1.

Simulation studies indicate that, with a 10-milliseconds time step, optimal performance
of the model requires that 8 be on the order of 0.6 (Blazis and Moore, 1987). Equation 3
with 8 = 0.6 also describes the inhibitory action of cerebellar Golgi cells on information
flow through the granular layer of cerebellar cortex. This coincidence was exploited in
implementing the model (Moore and Blazis, 1989).

The foregoing assumptions enable the SBD model to simultaneously generate response
topographies and ISI functions for both trace and forward-delay conditioning paradigms
(Moore et al, 1986). In addition, it retains the original Sutton-Barto model’s ability to de-
scribe multiple-CS phenomena such as blocking, higher-order conditioning, and conditioned
inhibition (Barto and Sutton, 1982; Sutton and Barto, 1981). In agreement with experimen-
tal liturature (Miller and Spear, 1985), the model does not predict extinction of conditioned
inhibition.

3.1 Implementing the SBD model

Moore and Blazis’s (1989) implementation of the SBD model is summarized in this sec-
tion. We required that the implementation scheme meet the following criteria: (a) It had
to involve the cerebellum and be consistent with its anatomy and physiology. (b) It had
to account for the lesion data, namely the fact that lesions of cerebellar cortex (HVI) or
associated brain stem circuits virtually elimiate the CR. (c) It had to propose neuronal loci
where the learning rule (Equation 2) might be implemented. This meant proposing sites
where CS information, the variable Z, convergences with the reinforcement signal, s — 5. (d)
It had to propose schemes for computing 3 via Equation 3 and s — 3. The last item held the
key. Once overcome, the rest of the implementation fell into place.

Turning now to the details of the implementation, the output variable s, which expresses
the form of the CR and is used in the learning rule, is generated by the action HVI PCs on
neurons in NIA to which they project. Evidence supporting this construction was reviewed
above. Next, s is transmitted with high fidelity through each of the synaptic links leading to




AAN motoneurons and generation of the peripherially observed CR. One synapse before this
stage, within SpoV, an efference copy of s peels off and ascends back to HVI via mossy fibers.
This efference copy of s consists of two streams. One stream passes through the granular
layer without modulation by Golgi cells. This stream gives rise to parallel fibers (axons of
granule cells) that carry s information to other circuit components, including Golgi cells that
modulate the other s stream. This modulation computes § and gives rise to parallel fibers
carrying 3 information.

The existence of separate parallel fibers which carry s and 3 information allow for com-
putation of the reinforcement factor in Equation 2. Golgi cells, different from those that
compute 3, receive two simultaneous inputs: an excitatory input from §-carrying parallel
fibers and an inhibitory input from axon collaterals of PCs activated by s-carrying parallel
fibers. Because Golgi cells are inhibitory neurons, the resulting action on granule cells to
which they project is proportional to s — 3. In the implementation scheme, this output is
directed to granule cells activated by CSs via mossy fibers. CS information has been pre-
processed such that it expresses the variable, z. The eligibility factor, &, presumably resides
within z-activated granule cells. They are sites of convergence for implementing of the learn-
ing rule because they encode Z and receive synaptic input encoding the reinforcement factor,
8 — 3, from Golgi cells.

Having computed AV, the output of these granule cells on the next computational step
is proportional to Vz, which is also equal to the next value of s if we assume only one CS.
Parallel fibers carrying Vz impinge on basket cells and PCs. The basket cells, which are
inhibitory neurons, send axons to PCs on an adjacent group of parallel fibers. Increasing
activation of basket cells causes the firing of these PCs to decrease below their baserate of
firing in proportion to Vz. This decrease in firing disinhibits neurons in NIA to which they
project, causing them to increase their firing rate and send an excitory pulse of activation
through the efferent pathway which terminates in AAN.

3.2 Implication of the SBD model

The complexity of the implementation scheme stems from considerations of anatomy and
physiology. These considerations are elaborated elsewhere (Blazis and Moore, 1987; Moore
and Blazis, 1989). The most compelling evidence for the scheme comes from Berthier and
Moore’s (1986) study of how PCs in HVI respond during NMR conditioning.

Berthier and Moore (1986) recorded from single PCs in HVI during the asymptotic stages
of two-tone differential conditioning. PCs with CR-related firing patterns could be classified
as either increasing or decreasing their baserate of firing whenever a CR occurred. Three
cells increased firing for every one that decreased firing. Firing patterns of PCs could also




be classified as either preceding or occurring simultaneously with CRs. All of the PCs that
decreased their firing did so before the CR occurred, as would be necessary if their activity
were responsible for initiating CRs. PCs which increased their firing before the occurrence
of CRs are implied by parallel fibers carrying Vz information. PCs that increase their firing
simultaneously with CRs are implied by the two streams of s-carrying efference from SpoV
used in the computation of 3 — s. It remains to be determined whether we can objectively
discriminate increases in PC firing that mirrors s from that mirroring 3. This caveat aside,
the frequency distribution of firing patterns observed by Berthier and Moore (1986) are
accounted for by the implementation scheme.

3.2.1 Behavioral predictions

One prediction of the SBD model is that the rate of CR acquisition in a trace conditioning
paradigm (but not a forward-delay paradigm) is an increasing function CS duration, provided
the interval between CS offset and US onset (trace interval) is sufficiently long, e.g., 300
milliseconds or more. The prediction follows directly from the model’s assumption that the
eligibility factor in the learning rule, &, decays at a rate which is inversely related to the
duration of the CS. The prediction is counterintuitive because it states that acquisition can
be faster with a longer-than-optimal ISI than one nearer to optimal. Preliminary studies
with an acoustic CS (Blazis and Moore, 1989) have born out this prediction, but only when
the CS is sufficiently intense (e.g., 80 dB). The prediction is not supported with a CS on the
order of 60 dB. In this case acquisition rate appears to be dominated not by CS duration
but as in forward-delay conditioning by ISI.

I mention this particular experiment in order point out that the SBD model does not
yet provide a complete account of NMR conditioning. In this case, the model is incomplete
because it says nothing about how CS intensity affects the variables z or . Part of the
motivation for the above experiment was to obtain information on how to incorporate these
effects into the model. The SBD model also fails to take account of processes that might
occur within intertrial intervals, e.g., the “consolidation” effects from studies showing that
rate of conditioning is a direct function of intertrial interval (Moore and Gormezano, 1977).

3.2.2 Physiological predictions

The most important prediction from the implementation scheme is that learning occurs
within the granular layer of cerebellar cortex. Testing this prediction will require experiments
on cerebellar slices using designs similar to those employed by Coulter and Disterhoft to
investigate long-term effects of NMR conditioning on hippocampal pyramidal cells (e.g.,
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Coulter, Lo Turco, Kubota, Disterhoft, Moore, and Alkon, 1989). It also remains to be
proven that SpoV cells that fire in relation to CRs actually send collateral efference copy
mirroring CR waveform to HVI. All we can say with confidence at this point is that cells in
SpoV exist that show CR-related firing of the kind needed to provide HVI with a current
copy of the variable s (Ricciardi, Richards, and Moore, 1989). We also know that some SpoV
cells send mossy fibers to HVI. We no not know that the two categories actually overlap.

The implementation scheme does not assign a role in learning to climbing fiber inputs
from DAO. Additional studies are needed to determine whether this is justified. One reason
for discounting the possible contribution of climbings fibers is that their low firing rate
makes them poor candidates for providing efference copy about s for implementation of the
learning rule. In addition, very few PCs in the Berthier and Moore (1986) responded with
a complex spike, indicative of climbing fiber input, when the US occurred. Nevertheless,
the possibility that climbing fibers are important for learning cannot be ruled out without
further experimental work (Moore and Berthier, 1987; Ito, 1989). In fact, Moore et al’s (1989)
implementation of the VET model, reviewed in the next secton, assumes that learning in
the cerebellum is reinforced by climbing fiber input elicited by the US.

4. The VET Model

The SBD model is able to simulate response topography because it assumes that every
potential CS provides the system with a fixed pattern of activation which serves as a template
for the CR. We have speculated about how template may be formed and the the possible
contributions of other brain regions, especially the hippocampus, in this process (Blazis
and Moore, 1987)." The fact remains that the SBD model basically sidesteps this issue.
In addition, the SBD model is incapable of adaptively changing CR topography so as to
simulate a number of paradigms. The SBD model cannot yield appropriate CR waveforms
for the following cases:

e Trace conditioning. CR waveforms should peak just before the occurrence of the US,
as in forward-delay paradigms, but the dynamics of the variable z do not permit this
to happen. Instead, CR waveforms begin to fall toward baseline when CS offset occurs.

e Forward-delay conditioning with long CS-US intervals. The SBD model cannot sim-
ulate inhibition of delay. Since CR-waveform mirrors the template provided by the
variable z, its latency and form are not influenced by CS-US interval.

e Multiple CS-US intervals. Training with multiple CS-US intervals yields complex
CR-waveforms. For example, a study by Millenson, Kehoe, and Gormezano (1977)
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showed that training with randomly mixed trials having CS-US intervals of 200 and
700 milliseconds gave rise to CRs with two peaks, each centered at a point of US onset.

The VET model overcomes these deficiencies. It is able to simulate appropriate CR
waveforms for these cases because of features absent in the SBD model. These features
include the following:

o (CSs are provided with a temporal dimension through tapped delay lines which encode,
not only the source of the stimulus, but also the time since the stimulus began. Another
set of tapped delay lines encodes the time since the stimulus ceased. Hence, the model
has timed-tagged input elements for both stimulus onset and offset (Equation 4).

o There are two neuron-like processing units that receive convergent input from CSs
and the US. One unit (designated V) is the output device (Equation 5). It has mod-
ifiable synaptic weights which are changed according to an LMS rule resembling the
Resorla-Wagner model (Equation 6). The main difference from the Rescorla-Wagner
model is that weight changes depend on local eligibility factors (Equation 7), a global
ISI parameter (Equation 8), and on an additional reinforcement signal reflecting the
expected time of occurrence of the US (Equation 9).

e This additional reinforcement signal is computed by the other processing unit, des-
ignated the E unit, which learns when the US occurs. Like the V unit, the E unit
receives convergent input from CSs and the US, and it has modifiable synaptic weights
which are changed according to a simple linear difference equation (Equation 11) which
includes local eligibility factors (Equation 10) and the global ISI parameter defined in
Equation 8.

A more formal treatment follows:

Architectural assumptions for the network have been described in detail elsewhere (Desmond
and Moore, 1988; Moore, Desmond, and Berthier, 1989). Basically, the onset and offset of
each CS begin activation of separate tapped delay lines. The elements in the delay line are
referred to as z;;; elements because each element can be referenced by (a) its CS (i), (b)
whether it is activated by the onset (j = 1) or offset (j = 0) of the CS, and (c) its number
within the delay line (k). For example, element 2295 belongs to the offset delay line for CS2,
and is the eighth element activated in the delay line. The output of an z;;; element (which
is either 1 or 0) at time ¢ is designated z,;(t).

The z;;, tapped delay line elements are activated sequentially, with a new element re-
cruited every time step (10 ms). When activated, an z,j; element changes value from 0 to
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1, and remains at 1 for 10 time steps. Thus, for each trial beginning at time ¢ = 1:

_ P drtk-1<i<n +k+9;
zin(t) = { 0 otherwise, 3

where ;; is the onset time (7 = 1) or offset time (j = 0) of CS ¢ (z;;x = 0 if CS ¢ is not
presented).

In addition to the z;; elements, the network has two higher-order processors designated
the V unit and E unit. Each z;;; element gives off two taps, one of which projects to the V
unit and the other to the E unit. The latter connections are modifiable, and the weights for
these connections are referred to as V;j, and E;j.. All other connections are non-modifiable;
these include: US connections with the V and E units, an E-unit projection to the V unit,
and connections between adjacent &;;. elements in the delay line.

The output of the network, s(t), is derived from the US input and from the weighted
sum of the V unit inputs, and is defined as:

s(t) =3 }: ; Vije(t)ziie(t) + L(t), (5)

where s(t) is confined to the closed unit interval.

Changes in the Vj;, weights are given by the following expression:
AViu(t) = e{L(t) — 8(6)}hisw(t)Zii(E)r(t). (6)
where:

c is a rate parameter, 0 < ¢ < 1.

L(t) is the reinforcement, 0 < L(t) < A, where A is analogous to the strength of the rein-

forcement during conditioning, 0 < A < 1. L(t) = 0 until the US occurs, at which time
L(t) = A

i(t) = T X Vije(t)zije(t), and is confined to the closed unit interval.

hijxe(t) constitutes an eligibility trace for each Vj; synapse, 0 < h;j(t) < 1. This term has
maximum value at the onset time of the element and decays geometrically. It is com-
puted as follows:

1.0 ft=r;+k-1
h,‘jk(t) = (O.S)h,'jk(t -— 1) ift > Ti; + k — 1; (7)

0.0 otherwise,
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Z;;(t) 1s an overall CS eligibility for onset and offset processes, 0 < %;;(t) < 1. This function
governs the rate of conditioning that occurs at a given interstimulus interval. Z;;(t) is
globally available to all V{;, and E;;, synapses. The equations described below approx-
imate the empirically observed inverted-U-shaped function found in rabbit nictitating
membrane conditioning:

(05)(t - T,'J') - 0.25 if Ti; + 6<t< Tij + 25;
E;j(t) = (—1/475)(t - T;j) + (500/475) if Tij + 25 S t < Tij + 500, (8)
0.0 otherwise,

7(t) is the output of the E unit, and represents the temporal expectation of reinforcement,
0 < 7(t) < A. It is defined as follows:

T(t) = max{E;jk(t)Azgjk(t) | 1= 1, e, My ] = 0, 1; k= 1, Ceey N} (9)

where:
1 if :l:gjk(t) - :E,‘J'k(t - 1) = 1;
0 otherwise,

Az(t) = { (10)

and E;;, are the connection weights of the input elements onto the E unit. Changes in
these weights are given by:

AE;i(t) = c[L(t) ~ r(t)] Azis(t)Z;;(t) (11)

4.1 Implementing the VET model

The implementation criteria for the VET model were the same as for the SBD model. The
two schemes share many common features, e.g., they both assume that CRs are generated
by the disinhibiting action of HVI PCs on NIA neurons, and Golgi cells play a crucial role in
both. The scheme assumes that the time-tagged input elements associated with a CS ascend
to cerbellar cortex via mossy fibers. They synapse within the granule layer, and with no
modulation are assigned to a corresponding set of parallel fibers. Note that the tapped delay
line architecture exists outside the cerebellum, and their anatomical justification is discussed
elsewhere (Moore et al, 1989). The parallel fibers which carry CS information synapse on
both PCs and Golgi cells.

These synapses are modifiable. Synapses on PCs are sites where Equation 6 is imple-
mented, and hence these cells are the V units. Synapses on Golgi cells are sites where
Equation 11 is implemented, and hence these cells are the E units. Both sets of modifiable
synapses are changed when the US occurs to the extent that they are eligible. The US trig-
gers a climbing fiber volley which causes these synapses to undergo synaptic depression via
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mechanisms of long term dression (LTD) identified by Ito (1989) and others. With learning,
CS input causes V and E units to decrease their baserate of firing. For V units, this decrease
initates a CR. For E units, this decrease disinhibits certain granule cells. These granule cells
receive input from brain stem neurons, possibly in SpoV, which also undergo learning due to
the convergence of CS and US information. Although no learning rule is specified, the SBD
(or SB) model suffices provided the variable z in Equation 1 increases rapidly to a plateau
at CS onset and decays slowly at CS offset.

With learning, the output (rate of firing) of these brain stem units consists of a short
latency plateau which extends well beyond the offset of the CS. This output provides a
uniform and long lasting stream of excitatory input to granule cells. The E units, however,
gate this excitation and prevent it from exciting parallel fibers that synapse on the V units.
As learning builds up in the E units, this gate is opened, but only during times near the
expected occurrence of the US. Thus, E units provide the second reinforcing event necessary
for modification of CS-input synapses on the V units so that they express appropriately
timed CR waveforms.

4.2 Implications of the VET model

The VET model simulates virtually all of tb hehavioral phenomena encompassed with
the SBD model, but unlike that model, it has the added feature of predicting realistic S-
shaped acquisition curves. Unlike the SBD model, however, it cannot simulate second-order
conditioning. As in the Rescorla-Wagner model, connection weights are strengthened only
in the presence of the US. Desmond and Moore (1988) describe several novel predictions
of the VET model. One prediction is that lengthening the duration of a CS after trace
conditioning should result in double-peaked CR waveforms, reflecting contributions of both
onset and offset tapped delay elements. The weights of offset elements are normally masked
by those of the onset elements, but lengthening the CS exposes these offset elements, and
CRs with two peaks emerge.

The physiological implications of the implementation scheme are many. The most inter-
esting implication is the possibility that cerebellar Golgi cells express LTD at parallel fiber
synapses in a manner analogous to that of PCs. There appears to be no evidence on this
point in the literature. Another implication of the scheme is that climbing fibers from DAO
do, in fact, reinforce learning. In order for this possibility to be taken seriously, it would
be necessary to record from PCs (and Golgi cells) in HVI during the initial stages of CR
acquisition. This was not done in the Berthier and Moore (1986) study, nor in any other
study, for methodological reasons: It is virtually impossible to record from single neurons in
an awake animal for the hundreds of trials normally required to obtain robust CRs. Never-
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theless, there are ways around this problem we are pursuing in our laboratory. Finally, the
scheme implies the existence of neurons in the brain stem that project to HVI and fire in
accordance with the scheme’s requirements. We have seen a number of candidate neurons
in recordings from cells in NIA, RN, SpoV. Cells in RN and SpoV project to HVI, and it
is possible, though not proven in rabbit, that NIA cells send mossy fibers to HVI as axon
collaterals.

5. Concluding Remarks

The two models and implementation schemes are quite different, but not mutually exclu-
sive. The VET model implies a neural network architecture which is well suited for forming
appropriate CR waveforms for a wide range of circumstances. The output of this network
need not be regarded as input to motoneurons. Instead, it could be regarded as a template
used by another learning system responsible for such things as generating CRs and imple-
menting second-order conditioning. Such a system might resemble the SBD model or some
other supervised learning (error correction) algorithm.

Such a hybrid model would not encompasses phenomena which both models fail to ad-
dress: intertrial interval effects, CS intensity, stimulus generalization and discrimination.
These phenomena require a richer respresentation of CS input to learning networks than
have been considered by either model too date. Desmond (1988) has developed one ap-
proach which can potentially address these topics. It represents CSs as planar arrays of
elements through which activation spreads and decays in an orderly, yet stochastic manner.
The planar array approach follows directly from the foundations provided by the SBD and
VET models, and we might anticipate as abundant a harvest of interesting implications as
have sprung from its forerunners.
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Introduction

Previous investigations of the rabbit nictitating membrane (NM) response have impli-
cated the red nucleus (RN) in the control of the conditioned response (CR). Lesions of
RN or the rubrobulbar tract produce deficits in contralateral, but not ipsilateral CRs (Ha-
ley, Lavond and Thompson, 1983; Rosenfield and Moore, 1983; Rosenfield and Moore, 1985;
Rosenfield, Dovydaitis, and Moore, 1985). HRP administration in the region of the accessory
abducens nucleus (AAN), the nucleus primarily responsible for defensive eyeball retraction,
results in labeling of contralateral RN neurons (Desmond, Rosenfield, and Moore, 1983). In
cats, stimulation of RN produces EPSPs in contralateral AAN neurons at monosynaptic la-
tencies (Grant and Horcholle-Bossavit, 1986). In light of evidence that cerebellar deep nuclei
(Clark, McCormick, Lavond, and Thompson, 1984; Yeo, Hardiman, and Glickstein, 1985a),
cerebellar cortex (Berthier and Moore, 1986; Yeo, Hardiman, and Glickstein, 1985b, but
see Lavond, Steinmetz, Yokaitis, Lee, and Thompson, 1986) and inferior olive (McCormick,
Steinmetz, and Thompson, 1985; Yeo, Hardiman, and Glickstein, 1986) are involved in CR
control, and given that RN receives major input from cerebellar deep nuclei, it appears likely
that RN is one component of a cerebellar~brain stem circuit. The purpose of this exper-
iment was to record the activity of single RN neurons from awake rabbits during classical
conditioning training {of the contralateral eye) and observe whether CR-related unit activity
was elicited.

Methods

The training procedures were similar to those described by Desmond and Moore for
recording in the dorsolateral pontine tegmentum (Desmond and Moore, 1986). We used a
differential conditioning procedure in order to obtain trials with and without CRs. CS+ and
CS- were 1200 or 600 Hz tones (counterbalanced) of 350 ms duration and 75 dB intensity
presented in a pseudorandom sequence. White noise of 65 dB intensity was on continually.
The US, an electrostimulation of .05~0.5 ms duration and 1 mA intensity delivered to the
periocular region of the right eye, coterminated with the CS+. The intertrial intervel was
20 s. The rabbits were trained for 2-3 days (100 trials/day) and then surgically prepared for
unit recordings. The rabbits were anesthetized with a ketamine (40 mg/kg) — acepromazine
(1 mg/kg) mixture (i.m.). A small recording hole was drilled on the left side of the skull,
and 3 additional holes were drilled for anchor screws. A recording chamber was cemented in
place and the rabbit was allowed to recover for 2 days.

For unit recordings, the head of the rabbit was held motionless by fastening the recording
chamber to a support bar. A tungsten microelectrode of 1-5 M{2 impedance was lowered into




the brain stem during presentation of CS+ and CS- trials. Unit activity and NM movement
were taped for offline analysis. Recording sites were marked at the end of the session by
passing cathodal current (20 pA for 10 s) through the recording electrode. A maximum of
3 recording tracks were made for each rabbit. The rabbits were then sacrificed with sodium
pentobarbital and transcardially perfused for subsequent histological identification of the
recording tracks.

For data analysis, tape recorded neuronal activity and NM responses were digitized using
an Apple Ile microcomputer. Spikes were window discriminated; the time of occurrence of
each spike, relative to the trial onset, was recorded to the nearest 250 us. The NM response
was sampled at 200 Hz. The data were then transferred to a Sun 3/50 workstation for
subsequent analysis.

Results

A total of 195 cells were recorded from 24 New Zealand albino rabbits. The 137 cells
judged to be located in the appropriate region were grouped as follows: 45 cells exhibited
unit activity that was strongly correlated with the CR, 26 displayed moderately correlated
activity, and 66 showed little or no CR-correlated activity. The 45 cells showing strong
CR-correlated activity could be grouped into three major types.

Type I (N = 22). These cells exhibited an increase in firing rate during the execution
of the CR. The onset time of the increase was correlated with the onset time of the CR
(mean r = 0.67, S.D. = 0.18.) The measure A?, as recommended by Commenges and Seal

(Commenges and Seal, 1946) was < 1 for each cell. These cells could be further subdivided
into two groups:

1. Cells with very low baseline firing (mean = 2.52 spikes/s, S.D. = 2.45, N = 11).

2. Cells that were spontaneously active (mean = 30.82 spikes/s, S.D. = 12.38, N = 11).

Neuronal firing patterns for 2 Type I cells are depicted in Figure 1 (one cell/row). For
each cell there are two graphs. The left-side graph, which will be referred to as a peri-stimulus
plot, depicts from top to bottom, NM responses in order of onset latency, spike raster plots,
and spike counts collected in 5 ms bins. Vertical lines indicate the onset time of the CS and
the US (on nonreinforced trials the US line indicates CS offset). Spike activity prior to CS
onset represents baseline firing. The label in the top left corner indicates the type of CS




(600 or 1200 Hz) and whether or not a US was present (+ or ~). A label of CR indicates
that CR trial types from both CS+ and CS- were pooled. The right-side graph, which will
be referred to as a peri-event plot, depicts spike and NM responses for CR trials only; NM
responses and spike activity are shifted so that CR onset times are aligned. Calibration
marker represents 100 ms (X-axis) and 100 spikes/s (Y-axis) for all graphs.
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Figure 1: Two examples of Type I cells. For each cell, neuronal activity and behavioral responses
are depicted in a peristimulus time histogram (left side) and a peri-event histogram (right side).

Type II (N = 15). These cells also exhibited an increase in firing rate during CR exe-
cution, but the onset of the neural burst was not correlated with the onset time of the CR
(mean r = 0.13, S.D. = 0.21, A? > 1). Examples of firing patterns for Type 1I cells are
given in Figure 2. Typically, these cells increased firing shortly after CS onset and increased
further during the CR. These cells could also be divided into two groups:




1. Cells with very low baseline firing (mean = 2.12 spikes/s, S.D. = 1.85, N = 9).
2. Cells that were spontaneously active (mean = 25.55 spikes/s, S.D. = 14.66, N = 6).
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Figure 2: Two examples of Type II cells.

Type III (N = 8). These cells exhibited CR-related decreases in firing rate. The mean
baseline firing rate for these cells was 23.83 spikes/s, S.D. = 10.12. Examples of two Type
III cells are given in Figure 3.

A total of 14 cells displayed both increases and decreases in firing after the US occurred.
Many of these cells were located in or in close proximity to the magnocellular division.
Examples of US responses in 2 of these cells are illustrated in Figure 4.
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Figure 3: Two examples of Type III cells.

To determine the temporal relationship between neural activity and the behavior, we
inspected peri-event plots, which were described above, and graphs showing the cumulative
sum of spike counts adjusted for baseline firing (Ellaway, 1977; Gibson, Houk, and Kohler-
man, 1985). The latter graphs were constructed using the algorithm, y(t) = ¥i_,[z(3) — 7],
where y(t) is the cumulative sum at time bin ¢ (10 ms bins were used), z(z) is the number
of spikes in time bin i, and Z is the mean number of spikes per bin computed from the
pre-CS period. In these graphs, changes in firing rate are depicted as changes in slope of
the line, where 0 slope denotes baseline firing. For Type II cells we tried to differentiate the
initial neural burst at CS onset (which occurred for both CR and non-CR trials) from a later
CR-specific discharge. The latter discharge was identified by a second change in slope in the
graph; neuronal lead time was measured from this point.
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Figure 4: Examples of complex neuronal responses to the unconditioned stimulus.

The results of these temporal analyses are depicted in Table 1, which shows the average
time in ms by which change in neuronal firing preceded the onset time of the CR for each
cell type. “Quiet” and “Active” refer to baseline firing rates.

Recording locations for all cells in this experiment are depicted in coronal sections in
Figure 5. Numbers in the bottom right corner of each panel indicate the distance in mm
rostral to the most posterior pole of the magnocellular RN. The region where most magno-
cellular RN cells are found is indicated in each section (see mRN label in 0.50 section). This
region is depicted with a dotted line at the 2.5 mm section because the large cells are more
diffusely located at this level. The parvicellular division is difficult to precisely delimit, but

Cell Type | Mean |SD.| N

Type I Quiet 60.5 | 37.9 | 11
Type I Active 70.9 | 33.6 | 11
Type II Quiet 528 | 3451 9
Type II Active | 583|349 | 6
Type 111 306 160.2 ) 8

Table 1: Time by which changes in neuronal discharge preceded the onset of the conditioned
response for each cell type. Mean and standard deviation of the lead times (in ms) as well as
sample size are reported.




it extends both laterally and dorsally from the magnocellular border (Gerhard, 1968).
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Figure 5: Anatomical locations of all recording sites in this study. Numbers at the bottom right
of each section represents the distance in mm rostral to the posterior pole of the magnocellular RN.
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Locations of strongly CR-correlated Type I, Type II, and Type III cells are illustrated
in Figures 6, 7, and 8, respectively. These figures show that many, but not all, Type I cells
tend to be found near the dorsal border of the caudal magnocellular RN. However, there is
considerable overlap in the anatomical distributions of the three cell types.

Conclusions

We have found that CR-related changes in neuronal activity in RN is manifested primarily
as increases in firing rate that precede the behavior by approximately 50-70 ms. Cells that
fired in this manner were divided into two types. Type I cells appeared to be highly movement
related, and consistently fired prior to the onset of the CR. Type II cells were not as well
correlated with movement. Many of these cells increased firing shortly after CS onset, and
thus, the activity of these cells appeared to have a sensory component. However, comparisons
of neural activity on CR versus non-CR trials for these cells suggests that their activity also
has a movement component. CR-related decreases in firing (Type III cells) were less often
encountered, and usually followed the onset of the behavior.

Based upon the sample gathered thus far, Type I cells with active baseline firing may
be more closely associated with the magnocellular division of RN than Type II or Type III
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Figure 6: Locations of all stongly CR-correlated cells that were classified as Type I. Cells that
exhibited quiet (+) and spontaneously active (*) baseline firing are depicted. Changes in neuronal
activity preceded CR onset in all but one of these cells.

cells. Most of the recordings that were in the magnocellular division tended to be located
at caudal levels of the nucleus and at the dorsal and lateral edges. Type I and Type II cells
having low baseline firing rates tended to be located dorsal to cells that were spontaneously
active. These quiet cells were presumed to be in the parvicellular division of RN as delimited
in Gerhard’s atlas (Gerhard, 1968).

The results of this experiment are consistent with RN involvement in CR control. Based
upon physiological and anatomical evidence in cats, descending projections from RN could
influence contralateral accessory abducens motoneurons either directly (Grant and Horcholle-
Bossavit, 1986) or via trigeminal relay (Edwards, 1972; Robinson, Houk, and Gibson, 1987).
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Figure 7: Locations of all stongly CR-correlated cells that were classified as Type II. Cells that
exhibited quiet (+) and spontaneously active (*) baseline firing are depicted. Changes in neuronal
activity preceded CR onset in all but one of these cells.
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Figure 8: Locations of all stongly CR-correlated cells that were classified as Type III. Decreases
in firing preceded CR onset in only 3 cases (*). The remaining 5 cells exhibited decreases in firing
after CR onset (+).
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